You are given an integer $n$.
Find any pair of integers $(x,y)$ $(1 \leq x,y \leq n)$ such that $x^y y+y^x x=n$.
The first line contains a single integer $t$ $(1 \leq t \leq 10^4)$ — the number of test cases. Each test case contains one line with a single integer $n$ $(1 \leq n \leq 10^{18})$.
For each test case, if possible, print two integers $x$ and $y$ $(1 \leq x,y \leq n)$. If there are multiple answers, print any. Otherwise, print $-1$ .
5 3 7 42 31250 20732790
-1 -1 2 3 5 5 3 13
ID | User | Problem | Subject | Hit | Post Date |
沒有發現任何「解題報告」 |